Die Mengen an Daten die Kliniken über ihre Patienten und Daten halten wächst immer weiter an. Neben der Menge ist aber auch die Heterogenität eine Herausforderung. So sind neben medizinischen Daten (etwa Diagnosen, Prozeduren) auch sozio-demographische und organisatorische Daten vorhanden, die wertvolle Informationen enthalten.
Die Daten kommen meist aus verschiedenen Systemen. Das macht es schwer, sie zu kombinieren und gemeinsam zu nutzen. Ein Beispiel für dieses Problem ist die Pflegepersonaluntergrenzen-Verordnung (PpUGV). Patienten- und Pflegepersonalzahlen müssen kombiniert und gemeinsam dokumentiert werden. Ohne computerbasierte Unterstützung entsteht ein großer manueller Aufwand.
Auch Ärzte stehen täglich vor der Aufgabe, aus der großen Anzahl an klinischen Variablen Schlüsse über die Diagnose und Therapie von Patienten zu ziehen. Da klinische Daten sehr komplex sind, werden Methoden zur Entscheidungsunterstützung von Ärzten immer wichtiger.
Auch im Bereich der Forschung mittels klinischer Daten ist es nötig, heterogene Daten zu kombinieren, etwa in der Epidemiologie, wo z.B. Zusammenhänge zwischen diversen Risikofaktoren und Erkrankungen gesucht werden. Hier ist durch die Vielzahl an potentiellen Risikomustern in den Daten ebenfalls notwendig, Computer zur Unterstützung zu nutzen.
Im meinem Promotionsthema beschäftige ich mich damit, neue Ansätze anhand von Datenvisualisierung und Mustererkennung zu erarbeiten, um Wissen aus heterogenen klinischen Daten zu extrahieren. So werden etwa Wege untersucht, um im Pflegemanagement benötigte Dokumentation automatisiert aus den verschiedenen Daten zu kombinieren. Für Ärzte werden neue Visualisierungen entwickelt, die die Struktur von Korrelationen in klinischen Daten sichtbar machen. Im Bereich der Epidemiologie werden innovative Machine Learning-Methoden erarbeitet, um epidemiologisch relevantes Wissen aus klinischen Datensätzen zu extrahieren.