In Deutschland herrscht ein Mangel an qualifiziertem Arzt- und Pflegepersonal und bereits Anfang 2018 waren 40.000 Pflegestellen unbesetzt. Verschärft hat sich diese Situation durch die Pflegepersonaluntergrenzen-Verordnung (PpUGV). Bisher geht man in der Gestaltung der Dienstpläne von einer konstanten Anzahl von Patienten und somit benötigtem Arzt- und Pflegepersonal aus. Schwankungen über den Tag (z.B. Notaufnahme) und das Jahr (z.B. Geburten, Grippewellen) werden kaum berücksichtigt.
Die Entwicklung des Patientenaufkommens in der Notaufnahme (und nachgelagerten Stationen) bestimmten Mustern, die vom Wochentag, der Tageszeit oder auch der Jahreszeit abhängen. Diese Schwankungen führen zu einem stark schwankenden Personalbedarf, v.a. auch in der Pflege. Die Folge ist eine „Überbesetzung“ auf der einen Seite und massive Überstundenaufbau der Pflegekräfte auf der anderen Seite.
Vor dem Hintergrund des Pflegenotstands und des Fachkräftemangels ist es von großer Relevanz das Pflegepersonal optimal einzusetzen, d.h. die Pflegepersonalressourcen zugeschnitten auf den tatsächlichen Bedarf einzusetzen. Derzeit müssen viele Krankenhäuser Betten sperren und Operationen verschieben, weil sie nicht genügend Pflegepersonal finden.
In diversen Studien wurde bereits gezeigt, dass viel Potential zur Verbesserung in der Pflegepersonalbedarfsplanung existiert und sich dies auch in der Pflegequalität widerspiegelt. Ich beschäftige mich mit meinem Promotionsthema damit, die Ansätze zur Realisierung dieses Potentials weiter voranzutreiben. Dies geschieht mit Hilfe von innovativen Methoden des maschinellen Lernens, um die Planungssicherheit generell zu verbessern und individuelle Fragen wie z.B. „Ändert sich mein Pflegepersonalbedarf während der Schulferien?“ oder „Welche Staffelung des Arbeitszeitbeginns ist in Hinblick auf Patientenversorgung/ Personaleinsatz optimal?“ datenbasiert und damit belegbar beantworten zu können.