zur Hauptnavigation springen zum Inhaltsbereich springen

BayWISS-Kolleg Gesundheit www.baywiss.de

Projekte im Verbundkolleg Gesundheit

© eliola, Pixabay '

Automated motion analysis of patients in everyday clinical practice for AI-assisted classification of biomechanical conditions of the lower extremities

Due to limited time and comparative data, patient movement is rarely included in orthopaedic diagnostics and is instead analysed by physiotherapists after the clinic visit. Motion capture systems allow the integration of this into the clinical diagnostic process. Weaknesses of these systems include patient preparation, such as placement of joint markers, and time-consuming manual post-processing. Markerless camera systems offer an alternative for 3D pose recognition by minimising workload (no marker placement, patients in everyday clothes) and are therefore more practical in clinical use. Equipped with kinematics, musculoskeletal simulation software allows the calculation of muscle, joint and ground reaction forces. The interpretation of raw data is a difficult task due to many independent parameters and unknown dependencies. For accurate classification without prior knowledge, machine learning (ML) can help by learning patterns within the data. Biomechanical parameters and gait phases provide clear targets for ML, but clinical correlations between existing conditions and movement need to be developed by the machine itself. This is particularly relevant for the human body, where a large number of mechanical/neurological parameters can simultaneously influence movement.

This project aims at ML-based pattern recognition with a clinical application in the detection of musculoskeletal disorders in patients' gait. It is planned to generate a gait database serving as reference values for the representation of physiological gait behaviour and the detection of atypical and potentially pathological patterns. By linking kinetic and kinematic data with medical history, a subsequent ML module will infer correlations between gait parameters and diagnoses or rehabilitation outcomes. An important task will be to understand the AI's solution process using Explainable AI techniques. This is particularly important in medical applications of AI, as it allows users to infer causal relationships from identified patterns.

MITGLIED IM KOLLEG

seit

Verbundkolleg Gesundheit

Betreuer Universität Regensburg:
Betreuer Ostbayerische Technische Hochschule Regensburg:

Prof. Dr.-Ing. Sebastian Dendorfer

Das Labor für Biomechanik (LBM) unter der Leitung von Prof. Dr.-Ing. Sebastian Dendorfer hat seinen Forschungsschwerpunkt in den Bereichen MuskuloskelettaleSimulation, mechanisches Verhalten von Biogeweben und Implantattechnologie. Das LBM ist als eines von weltweit nur drei AnyBody Knowledge Centers ein anerkanntes Kompetenzzentrum im Bereich der muskuloskelettalen Simulation.

Forschungsschwerpunkte:

  • Muskuloskelettale Simulation
  • Orthopädische Biomechanik

Betreute Projekte:

Preise und Stipendien

Promotionsstipendium der Studienstiftung der Deutschen Wirtschaft (sdw)

Leonhard Stein

Leonhard Stein

Ostbayerische Technische Hochschule Regensburg

Koordination

Treten Sie mit uns in Kontakt. Wir freuen uns auf Ihre Fragen und Anregungen zum Verbundkolleg Gesundheit.

Dr. Sabine Fütterer-Akili

Dr. Sabine Fütterer-Akili

Koordinatorin BayWISS-Verbundkolleg Gesundheit und BayWISS-Verbundkolleg Economics and Business

Universität Regensburg
Zentrum zur Förderung des wissenschaftlichen Nachwuchses
Universitätsstraße 31
93053 Regensburg

Telefon: +49 941 9435548
gesundheit.vk@baywiss.de