zur Hauptnavigation springen zum Inhaltsbereich springen

BayWISS-Kolleg Gesundheit www.baywiss.de

Projekte im Verbundkolleg Gesundheit

© eliola, Pixabay

Real-time musculoskeletal simulation and evaluation of data from wearable smart-devices to prevent signs of aging

Age-related diseases affect the human body in many different ways. Health effects can be seen in the cardiovascular and musculoskeletal system. There are first approaches which describe a coherence between those effects. They are mainly caused by physical inactivity and unhealthy habits.
Current social events and technical progress promote autonomous and independent ways of diagnosis and especially prevention of diseases. Exit barriers and other restrictions, which can be seen during the Corona pandemic lead to physical inactivity. This physical inactivity also increases with age Digitalization is a great approach to intervene here. Smart devices like wearables are selling incredibly fast and offer more and more features to monitor daily movements and interactions. This massive amount of data includes accelerations, number of steps and - depending on the device - several other parameters concerning the cardiovascular system. Most of the data is not reviewed or cannot be interpreted by the user, because there is often no context what this data means to the personal health.
This project aims for a feedback system controlled by artificial intelligence to merge different biomechanical aspects and get them handsome. It makes such data more approachable, comprehensible and gives rudiments for daily exercises to prevent signs of aging and improve quality of living. Therefor user data of daily motion patterns as walking, sitting and cycling as well as exercises from literature as jumps and drop jumps will be recorded under laboratory conditions. Measurements of laboratory instruments will be compared to measurements gained from smart devices (e.g. smart watch, smartphone). Based on this data different patterns of burden will be defined, validated and serve as input information for further processing and artificial intelligence. Later, integral loads and activities of daily living should be continuously assessed according to these schemes. The user will get feedback in predefined intervals or on demand in real time on how he can improve his condition by exercise or changes of posture to prevent fatigue and loss of tissue, which causes diseases like osteoporosis or sarcopenia. The study will show how precise musculoskeletal loads can be displayed and how good highest and constant physical stress can be measured and detected by commercial wearable devices. With success of this study we can make age prevention more tangible and an improvement of quality of living irrespective of a therapist or medical.



Betreuer Ostbayerische Technische Hochschule Regensburg:

Prof. Dr.-Ing. Sebastian Dendorfer

Das Labor für Biomechanik (LBM) unter der Leitung von Prof. Dr.-Ing. Sebastian Dendorfer hat seinen Forschungsschwerpunkt in den Bereichen MuskuloskelettaleSimulation, mechanisches Verhalten von Biogeweben und Implantattechnologie. Das LBM ist als eines von weltweit nur drei AnyBody Knowledge Centers ein anerkanntes Kompetenzzentrum im Bereich der muskuloskelettalen Simulation.


  • Muskuloskelettale Simulation
  • Orthopädische Biomechanik

Betreute Projekte:

Lukas Reinker

Lukas Reinker

Ostbayerische Technische Hochschule Regensburg


Treten Sie mit uns in Kontakt. Wir freuen uns auf Ihre Fragen und Anregungen zum Verbundkolleg Gesundheit.

Dr. Sabine Fütterer-Akili (in Elternzeit)

Dr. Sabine Fütterer-Akili (in Elternzeit)

Koordinatorin BayWISS-Verbundkolleg Gesundheit und BayWISS-Verbundkolleg Economics and Business (in Elternzeit)

Dr. Kristina Klitzke

Dr. Kristina Klitzke

Koordinatorin BayWISS-Verbundkolleg Gesundheit und BayWISS-Verbundkolleg Economics and Business

Universität Regensburg
Zentrum zur Förderung des wissenschaftlichen Nachwuchses
Universitätsstraße 31
93053 Regensburg

Telefon: +49 941 9435548